

Heterogeneous Documentation and Poor Concordance of NASH Pathology May Limit its Clinical Utility in Real-World Practice

Hannah P. Kim¹; Michael O. Idowu²; Richard C. Zink³; Andrea R. Mospan³; Michael Roden⁴; Philip Newsome⁵; Anna Lok⁶; Paul Thuluvathⁿ; Jawahar Taunk⁶; Michael W. Fried³; Arun J. Sanyal²; A. Sidney Barritt IV¹

¹University of North Carolina at Chapel Hill, Chapel Hill, NC; ²Virginia Commonwealth University, Richmond, VA; ³Target RWE, Durham, NC; ⁴Heinrich-Heine University of Birmingham, Birmingham, England; ⁶University of Michigan, Ann Arbor, MI; ⁷Mercy Medical Center, Baltimore, MD; ⁸Advanced Gastroenterology Associates, Palm Harbor, FI

Introduction

- Liver biopsy is the gold standard for assessing the histologic features of NASH.
- The utility of a biopsy is dependent on the accuracy of its interpretation and whether all essential features are reported.
- Useful reporting should clearly document steatosis, inflammation, hepatocyte ballooning and fibrosis or the lack thereof.
- The aim of this study is to describe completeness of real-world NASHrelated pathology reports and the concordance of findings with a central expert pathologist.

Methods

- TARGET-NASH is a longitudinal real-world cohort of patients with NAFLD.
- Liver histology reports from academic and community practices were analyzed for documentation of steatosis, lobular inflammation, portal inflammation, hepatocyte ballooning and fibrosis stage.
- The presence of a standardized scoring system (NAFLD activity score [NAS] or Brunt Score) and the local pathologist's overall interpretation were recorded.
- A subset of biopsy slides was overread by a central expert pathologist.
- Descriptive analysis and pathologists' concordance for quantifying steatosis, inflammation, ballooning and fibrosis, assessed using weighted kappa statistics, are reported.

Table 1. Baseline Characteristics – NASH Patients

	All Patients	Academic	Community
Summary	(N=221)	(N = 167)	(N = 54)
Age at Study Entry (years)			
Median (n)	53.0 (153)	51.0 (113)	56.5 (40)
Min – Max	10.0 - 75.0	10.0 - 75.0	24.0 - 71.0
Gender, n (%)			
n	153	113	40
Female	87 (56.9%)	65 (57.5%)	22 (55.0%)
Race, n (%)	144	104	40
White	122 (84.7%)	89 (85.6%)	33 (82.5%)
Black or African American	8 (5.6%)	2 (1.9%)	6 (15.0%)
Asian	6 (4.2%)	5 (4.8%)	1 (2.5%)
Other	8 (5.6%)	8 (7.7%)	0 (0.0%)
Not Available	9	9	0
Ethnicity, n (%)			
n	152	112	40
Hispanic or Latino	35 (23.0%)	30 (26.8%)	5 (12.5%)
Not Hispanic or Latino	116 (76.3%)	81 (72.3%)	35 (87.5%)
Other	1 (0.7%)	1 (0.9%)	-
Not Available	1	1	0
Site Type, n (%)	153	113	40
n	113 (73.9%)	113 (100.0%)	-
Academic	40 (26.1%)	-	40 (100.0%)
Community	70 (20.1/0)		40 (100.070)

Conclusions

- There is substantial heterogeneity in the histological reporting of NASH in the real world with a large proportion of reports missing important descriptors of NASH disease activity.
- There is discordance between interpretation by site pathologists (academic and community) and a central pathologist.
- At best there is only moderate concordance for fibrosis staging.
- Such heterogeneity and lack of reliability in histologic reporting and interpretation may adversely impact patient assessment and application of new NASH therapies.

Results

Score

Brunt Grade

Brunt Stage

(Fibrosis)

(Inflammation)

- A total of 153 pathology reports from 14 sites with a diagnosis of NASH were reviewed.
- Documentation on steatosis, lobular inflammation, portal inflammation and ballooning were missing from 39%, 46%, 52% and 46% of reports, respectively.
- Grading of NASH components was more commonly performed using the NAS compared to the Brunt criteria (65% vs 24%), but a standardized grading system was missing in 21% of reports.
- 75 digitized biopsy slides were interpreted by a central pathologist and compared to reports from local pathologists at TARGET-NASH sites.
- There was significant discrepancy in grading of NASH components and fibrosis staging (Table 2).
- Weighted kappa scores showed poor to fair concordance for steatosis, lobular inflammation, portal inflammation, and hepatocyte ballooning.
- Concordance for NAS and Brunt grading was fair.

26

69

There was moderate agreement for fibrosis staging.

Table 2. Kappa Statistics for Concordance of Histological Interpretation in NASH for Central vs Local Read of Biopsies

	Number of	Weighted Kappa			
Histological	Pathology Reports	Statistic	Concordance		
Characteristic	Compared	(95% CI)	Interpretation		
Steatosis	57	0.364	Fair		
		(0.2029, 0.5242)	ı alı		
Lobular	20	-0.081	Door		
Inflammation	29	(-0.1847, 0.0220)	Poor		
Portal	31	0.210	Fa!		
Inflammation		(-0.0376, 0.4580)	Fair		
Hepatocyte	26	0.117	Slight		
Ballooning		(-0.0708, 0.3038)	Slight		
Fibrosis Stage	69	0.575	Moderate		
		(0.4603, 0.6894)	woderate		
Scoring System					
NAFLD Activity	38	0.237	Eair		
Scoro		(0.0501.0.4150)	Fair		

(0.0591, 0.4150)

0.384

(0.1591, 0.6082)

0.590

(0.4775, 0.7019)

Fair

Moderate

Acknowledgements and Disclosures: TARGET-NASH is a study sponsored by Target RWE. Target RWE is a health evidence solutions company headquartered in Durham, NC. The authors would like to thank all the investigators, participants, and research staff associated with TARGET-NASH. Disclosures are on file with AASLD. ClinicalTrials.gov Identifier: NCT02815891.